U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
↳ CSR
↳ CSDependencyPairsProof
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
U211(tt, M, N) → PLUS(N, M)
ISNAT(plus(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(plus(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
PLUS(N, 0) → U111(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), isNat(N)), M, N)
PLUS(N, s(M)) → AND(isNat(M), isNat(N))
PLUS(N, s(M)) → ISNAT(M)
U111(tt, N) → N
U211(tt, M, N) → N
U211(tt, M, N) → M
AND(tt, X) → X
isNat(V2)
U111(tt, N) → U(N)
U211(tt, M, N) → U(N)
U211(tt, M, N) → U(M)
AND(tt, X) → U(X)
U(isNat(V2)) → ISNAT(V2)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
AND(tt, X) → U(X)
U(isNat(V2)) → ISNAT(V2)
ISNAT(plus(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(plus(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
POL(0) = 0
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = 2·x1
POL(U(x1)) = x1
POL(U11(x1, x2)) = 1 + 2·x2
POL(U21(x1, x2, x3)) = 2 + x2 + 2·x3
POL(and(x1, x2)) = 2 + x2
POL(isNat(x1)) = 2·x1
POL(plus(x1, x2)) = 1 + 2·x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
ISNAT(plus(V1, V2)) → AND(isNat(V1), isNat(V2))
ISNAT(plus(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
AND(tt, X) → U(X)
U(isNat(V2)) → ISNAT(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
AND(tt, X) → U(X)
U(isNat(V2)) → ISNAT(V2)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
PLUS(N, s(M)) → U211(and(isNat(M), isNat(N)), M, N)
U211(tt, M, N) → PLUS(N, M)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(N, s(M)) → U211(and(isNat(M), isNat(N)), M, N)
Used ordering: Combined order from the following AFS and order.
U211(tt, M, N) → PLUS(N, M)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDependencyGraphProof
U211(tt, M, N) → PLUS(N, M)
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)